3.11.72 \(\int \frac {x^{11/2}}{(a+b x^2+c x^4)^2} \, dx\) [1072]

3.11.72.1 Optimal result
3.11.72.2 Mathematica [C] (verified)
3.11.72.3 Rubi [A] (verified)
3.11.72.4 Maple [C] (verified)
3.11.72.5 Fricas [B] (verification not implemented)
3.11.72.6 Sympy [F(-1)]
3.11.72.7 Maxima [F]
3.11.72.8 Giac [F]
3.11.72.9 Mupad [B] (verification not implemented)

3.11.72.1 Optimal result

Integrand size = 20, antiderivative size = 520 \[ \int \frac {x^{11/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=-\frac {b \sqrt {x}}{2 c \left (b^2-4 a c\right )}+\frac {x^{5/2} \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\left (b^2-10 a c+\frac {b \left (b^2-12 a c\right )}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4 \sqrt [4]{2} c^{5/4} \left (b^2-4 a c\right ) \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}-\frac {\left (b^2-10 a c-\frac {b \left (b^2-12 a c\right )}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4 \sqrt [4]{2} c^{5/4} \left (b^2-4 a c\right ) \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}}-\frac {\left (b^2-10 a c+\frac {b \left (b^2-12 a c\right )}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4 \sqrt [4]{2} c^{5/4} \left (b^2-4 a c\right ) \left (-b-\sqrt {b^2-4 a c}\right )^{3/4}}-\frac {\left (b^2-10 a c-\frac {b \left (b^2-12 a c\right )}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4 \sqrt [4]{2} c^{5/4} \left (b^2-4 a c\right ) \left (-b+\sqrt {b^2-4 a c}\right )^{3/4}} \]

output
1/2*x^(5/2)*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)-1/8*arctan(2^(1/4)*c^ 
(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(b^2-10*a*c+b*(-12*a*c+b^2)/( 
-4*a*c+b^2)^(1/2))*2^(3/4)/c^(5/4)/(-4*a*c+b^2)/(-b-(-4*a*c+b^2)^(1/2))^(3 
/4)-1/8*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(b^ 
2-10*a*c+b*(-12*a*c+b^2)/(-4*a*c+b^2)^(1/2))*2^(3/4)/c^(5/4)/(-4*a*c+b^2)/ 
(-b-(-4*a*c+b^2)^(1/2))^(3/4)-1/8*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a 
*c+b^2)^(1/2))^(1/4))*(b^2-10*a*c-b*(-12*a*c+b^2)/(-4*a*c+b^2)^(1/2))*2^(3 
/4)/c^(5/4)/(-4*a*c+b^2)/(-b+(-4*a*c+b^2)^(1/2))^(3/4)-1/8*arctanh(2^(1/4) 
*c^(1/4)*x^(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(b^2-10*a*c-b*(-12*a*c+b^2 
)/(-4*a*c+b^2)^(1/2))*2^(3/4)/c^(5/4)/(-4*a*c+b^2)/(-b+(-4*a*c+b^2)^(1/2)) 
^(3/4)-1/2*b*x^(1/2)/c/(-4*a*c+b^2)
 
3.11.72.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.40 (sec) , antiderivative size = 237, normalized size of antiderivative = 0.46 \[ \int \frac {x^{11/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=-\frac {4 \text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {b \log \left (\sqrt {x}-\text {$\#$1}\right )-c \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}^3+2 c \text {$\#$1}^7}\&\right ]+\frac {\frac {4 c \sqrt {x} \left (a b+b^2 x^2-2 a c x^2\right )}{a+b x^2+c x^4}+\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {-4 b^3 \log \left (\sqrt {x}-\text {$\#$1}\right )+15 a b c \log \left (\sqrt {x}-\text {$\#$1}\right )+3 b^2 c \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4-6 a c^2 \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}^3+2 c \text {$\#$1}^7}\&\right ]}{b^2-4 a c}}{8 c^2} \]

input
Integrate[x^(11/2)/(a + b*x^2 + c*x^4)^2,x]
 
output
-1/8*(4*RootSum[a + b*#1^4 + c*#1^8 & , (b*Log[Sqrt[x] - #1] - c*Log[Sqrt[ 
x] - #1]*#1^4)/(b*#1^3 + 2*c*#1^7) & ] + ((4*c*Sqrt[x]*(a*b + b^2*x^2 - 2* 
a*c*x^2))/(a + b*x^2 + c*x^4) + RootSum[a + b*#1^4 + c*#1^8 & , (-4*b^3*Lo 
g[Sqrt[x] - #1] + 15*a*b*c*Log[Sqrt[x] - #1] + 3*b^2*c*Log[Sqrt[x] - #1]*# 
1^4 - 6*a*c^2*Log[Sqrt[x] - #1]*#1^4)/(b*#1^3 + 2*c*#1^7) & ])/(b^2 - 4*a* 
c))/c^2
 
3.11.72.3 Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 431, normalized size of antiderivative = 0.83, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.350, Rules used = {1435, 1701, 1826, 1752, 756, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{11/2}}{\left (a+b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 1435

\(\displaystyle 2 \int \frac {x^6}{\left (c x^4+b x^2+a\right )^2}d\sqrt {x}\)

\(\Big \downarrow \) 1701

\(\displaystyle 2 \left (\frac {x^{5/2} \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int \frac {x^2 \left (b x^2+10 a\right )}{c x^4+b x^2+a}d\sqrt {x}}{4 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 1826

\(\displaystyle 2 \left (\frac {x^{5/2} \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\frac {b \sqrt {x}}{c}-\frac {\int \frac {\left (b^2-10 a c\right ) x^2+a b}{c x^4+b x^2+a}d\sqrt {x}}{c}}{4 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 1752

\(\displaystyle 2 \left (\frac {x^{5/2} \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\frac {b \sqrt {x}}{c}-\frac {\frac {1}{2} \left (-\frac {b \left (b^2-12 a c\right )}{\sqrt {b^2-4 a c}}-10 a c+b^2\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b-\sqrt {b^2-4 a c}\right )}d\sqrt {x}+\frac {1}{2} \left (\frac {b \left (b^2-12 a c\right )}{\sqrt {b^2-4 a c}}-10 a c+b^2\right ) \int \frac {1}{c x^2+\frac {1}{2} \left (b+\sqrt {b^2-4 a c}\right )}d\sqrt {x}}{c}}{4 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 756

\(\displaystyle 2 \left (\frac {x^{5/2} \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\frac {b \sqrt {x}}{c}-\frac {\frac {1}{2} \left (\frac {b \left (b^2-12 a c\right )}{\sqrt {b^2-4 a c}}-10 a c+b^2\right ) \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {-b-\sqrt {b^2-4 a c}}}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}\right )+\frac {1}{2} \left (-\frac {b \left (b^2-12 a c\right )}{\sqrt {b^2-4 a c}}-10 a c+b^2\right ) \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {\sqrt {b^2-4 a c}-b}}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}\right )}{c}}{4 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle 2 \left (\frac {x^{5/2} \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\frac {b \sqrt {x}}{c}-\frac {\frac {1}{2} \left (\frac {b \left (b^2-12 a c\right )}{\sqrt {b^2-4 a c}}-10 a c+b^2\right ) \left (-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {-\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )+\frac {1}{2} \left (-\frac {b \left (b^2-12 a c\right )}{\sqrt {b^2-4 a c}}-10 a c+b^2\right ) \left (-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{\sqrt {\sqrt {b^2-4 a c}-b}}-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )}{c}}{4 \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 2 \left (\frac {x^{5/2} \left (2 a+b x^2\right )}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\frac {b \sqrt {x}}{c}-\frac {\frac {1}{2} \left (\frac {b \left (b^2-12 a c\right )}{\sqrt {b^2-4 a c}}-10 a c+b^2\right ) \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )+\frac {1}{2} \left (-\frac {b \left (b^2-12 a c\right )}{\sqrt {b^2-4 a c}}-10 a c+b^2\right ) \left (-\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{\sqrt [4]{2} \sqrt [4]{c} \left (\sqrt {b^2-4 a c}-b\right )^{3/4}}\right )}{c}}{4 \left (b^2-4 a c\right )}\right )\)

input
Int[x^(11/2)/(a + b*x^2 + c*x^4)^2,x]
 
output
2*((x^(5/2)*(2*a + b*x^2))/(4*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) - ((b*Sqr 
t[x])/c - (((b^2 - 10*a*c + (b*(b^2 - 12*a*c))/Sqrt[b^2 - 4*a*c])*(-(ArcTa 
n[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/ 
4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4))) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(- 
b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b - Sqrt[b^2 - 4*a*c])^(3 
/4))))/2 + ((b^2 - 10*a*c - (b*(b^2 - 12*a*c))/Sqrt[b^2 - 4*a*c])*(-(ArcTa 
n[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/ 
4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(- 
b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2^(1/4)*c^(1/4)*(-b + Sqrt[b^2 - 4*a*c])^(3 
/4))))/2)/c)/(4*(b^2 - 4*a*c)))
 

3.11.72.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 1435
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> With[{k = Denominator[m]}, Simp[k/d   Subst[Int[x^(k*(m + 1) - 1)*(a + b 
*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[{a, 
b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]
 

rule 1701
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x 
_Symbol] :> Simp[(-d^(2*n - 1))*(d*x)^(m - 2*n + 1)*(2*a + b*x^n)*((a + b*x 
^n + c*x^(2*n))^(p + 1)/(n*(p + 1)*(b^2 - 4*a*c))), x] + Simp[d^(2*n)/(n*(p 
 + 1)*(b^2 - 4*a*c))   Int[(d*x)^(m - 2*n)*(2*a*(m - 2*n + 1) + b*(m + n*(2 
*p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^(p + 1), x], x] /; FreeQ[{a, b, c 
, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && ILtQ[p, -1 
] && GtQ[m, 2*n - 1]
 

rule 1752
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x 
_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q)) 
   Int[1/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   I 
nt[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2 
, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 
 - 4*a*c] ||  !IGtQ[n/2, 0])
 

rule 1826
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + ( 
c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[e*f^(n - 1)*(f*x)^(m - n + 1)*((a 
+ b*x^n + c*x^(2*n))^(p + 1)/(c*(m + n*(2*p + 1) + 1))), x] - Simp[f^n/(c*( 
m + n*(2*p + 1) + 1))   Int[(f*x)^(m - n)*(a + b*x^n + c*x^(2*n))^p*Simp[a* 
e*(m - n + 1) + (b*e*(m + n*p + 1) - c*d*(m + n*(2*p + 1) + 1))*x^n, x], x] 
, x] /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 
 0] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*(2*p + 1) + 1, 0] && Intege 
rQ[p]
 
3.11.72.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.44 (sec) , antiderivative size = 146, normalized size of antiderivative = 0.28

method result size
derivativedivides \(\frac {-\frac {\left (2 a c -b^{2}\right ) x^{\frac {5}{2}}}{2 c \left (4 a c -b^{2}\right )}+\frac {a b \sqrt {x}}{2 c \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (\left (10 a c -b^{2}\right ) \textit {\_R}^{4}-a b \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{8 c \left (4 a c -b^{2}\right )}\) \(146\)
default \(\frac {-\frac {\left (2 a c -b^{2}\right ) x^{\frac {5}{2}}}{2 c \left (4 a c -b^{2}\right )}+\frac {a b \sqrt {x}}{2 c \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (\left (10 a c -b^{2}\right ) \textit {\_R}^{4}-a b \right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{8 c \left (4 a c -b^{2}\right )}\) \(146\)

input
int(x^(11/2)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)
 
output
2*(-1/4*(2*a*c-b^2)/c/(4*a*c-b^2)*x^(5/2)+1/4*a*b/c/(4*a*c-b^2)*x^(1/2))/( 
c*x^4+b*x^2+a)+1/8/c/(4*a*c-b^2)*sum(((10*a*c-b^2)*_R^4-a*b)/(2*_R^7*c+_R^ 
3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))
 
3.11.72.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 9180 vs. \(2 (424) = 848\).

Time = 2.21 (sec) , antiderivative size = 9180, normalized size of antiderivative = 17.65 \[ \int \frac {x^{11/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate(x^(11/2)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")
 
output
Too large to include
 
3.11.72.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^{11/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

input
integrate(x**(11/2)/(c*x**4+b*x**2+a)**2,x)
 
output
Timed out
 
3.11.72.7 Maxima [F]

\[ \int \frac {x^{11/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {x^{\frac {11}{2}}}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \]

input
integrate(x^(11/2)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")
 
output
1/2*(b*x^(9/2) + 2*a*x^(5/2))/((b^2*c - 4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + ( 
b^3 - 4*a*b*c)*x^2) + integrate(-1/4*(b*x^(7/2) + 10*a*x^(3/2))/((b^2*c - 
4*a*c^2)*x^4 + a*b^2 - 4*a^2*c + (b^3 - 4*a*b*c)*x^2), x)
 
3.11.72.8 Giac [F]

\[ \int \frac {x^{11/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {x^{\frac {11}{2}}}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \]

input
integrate(x^(11/2)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")
 
output
integrate(x^(11/2)/(c*x^4 + b*x^2 + a)^2, x)
 
3.11.72.9 Mupad [B] (verification not implemented)

Time = 20.59 (sec) , antiderivative size = 31964, normalized size of antiderivative = 61.47 \[ \int \frac {x^{11/2}}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
int(x^(11/2)/(a + b*x^2 + c*x^4)^2,x)
 
output
2*atan(((((9*a^3*b^9 - 397*a^4*b^7*c + 130000*a^7*b*c^4 + 6549*a^5*b^5*c^2 
 - 47800*a^6*b^3*c^3)/(2*(b^8*c + 256*a^4*c^5 - 16*a*b^6*c^2 + 96*a^2*b^4* 
c^3 - 256*a^3*b^2*c^4)) + ((x^(1/2)*(1006632960*a^10*b*c^11 + 4096*a^3*b^1 
5*c^4 + 147456*a^4*b^13*c^5 - 4915200*a^5*b^11*c^6 + 53739520*a^6*b^9*c^7 
- 298844160*a^7*b^7*c^8 + 918552576*a^8*b^5*c^9 - 1493172224*a^9*b^3*c^10) 
)/(16*(b^12*c + 4096*a^6*c^7 - 24*a*b^10*c^2 + 240*a^2*b^8*c^3 - 1280*a^3* 
b^6*c^4 + 3840*a^4*b^4*c^5 - 6144*a^5*b^2*c^6)) - ((-(b^21 + b^6*(-(4*a*c 
- b^2)^15)^(1/2) + 73728000*a^10*b*c^10 + 2085*a^2*b^17*c^2 - 36320*a^3*b^ 
15*c^3 + 404160*a^4*b^13*c^4 - 3001344*a^5*b^11*c^5 + 15064576*a^6*b^9*c^6 
 - 50503680*a^7*b^7*c^7 + 108380160*a^8*b^5*c^8 - 134676480*a^9*b^3*c^9 - 
2500*a^3*c^3*(-(4*a*c - b^2)^15)^(1/2) - 69*a*b^19*c + 525*a^2*b^2*c^2*(-( 
4*a*c - b^2)^15)^(1/2) - 39*a*b^4*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(1677 
7216*a^12*c^17 + b^24*c^5 - 48*a*b^22*c^6 + 1056*a^2*b^20*c^7 - 14080*a^3* 
b^18*c^8 + 126720*a^4*b^16*c^9 - 811008*a^5*b^14*c^10 + 3784704*a^6*b^12*c 
^11 - 12976128*a^7*b^10*c^12 + 32440320*a^8*b^8*c^13 - 57671680*a^9*b^6*c^ 
14 + 69206016*a^10*b^4*c^15 - 50331648*a^11*b^2*c^16)))^(1/4)*(167772160*a 
^9*c^11 + 40960*a^3*b^12*c^5 - 983040*a^4*b^10*c^6 + 9830400*a^5*b^8*c^7 - 
 52428800*a^6*b^6*c^8 + 157286400*a^7*b^4*c^9 - 251658240*a^8*b^2*c^10)*1i 
)/(2*(b^8*c + 256*a^4*c^5 - 16*a*b^6*c^2 + 96*a^2*b^4*c^3 - 256*a^3*b^2*c^ 
4)))*(-(b^21 + b^6*(-(4*a*c - b^2)^15)^(1/2) + 73728000*a^10*b*c^10 + 2...